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SUMMARY

In this paper we establish a link between the sigma transformation approach and the arbitrary Lagrangian–
Eulerian (ALE) approach. For that purpose we introduce the ALE-sigma (ALES) approach, which consists
in an ALE interpretation of the sigma transformation. Taking advantage of this new approach, we propose
a general ALES transformation, allowing for a great adaptability of the vertical discretization and therefore
overcoming some drawbacks of the classical sigma transformation. Numerical results are presented,
showing the advantages of this general coordinate system, as, for example, a better representation of
horizontal stratifications. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we focus on a particular way of treating the domain movement in three-dimensional
free surface flows. Several techniques exist to deal with this critical feature. Among them, the
arbitrary Lagrangian–Eulerian (ALE) approach—see, for instance, [1, 2]—has been adopted by
many authors because of its great adaptability. It consists in moving the mesh at an arbitrary velocity,
which should be different from the fluid velocity, allowing for a continuous updating of the mesh.
Another widely used technique, especially in the atmospheric and oceanographic communities,
is referred to as the sigma transformation or the topography-following coordinate system [3]. It
consists in performing a transformation of the vertical coordinate—the z-coordinate—allowing one
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to adopt a vertical discretization of the domain, which at each time step follows the bathymetry
and the free surface. Different systems have been developed on this approach, characterized by
the choice of the discrete transformation function [4–7].

To our knowledge, the link between both approaches is not clearly established in the literature.
In the works describing the sigma transformation and its different variants, the ALE approach is
generally not mentioned. In [8], an ALE formulation based on the classical variant of the sigma
transformation for a shallow water flow problem is presented. It is claimed that the conventional
sigma models solve flow equations without accounting for the effect of moving grids in the vertical
direction. In this paper we state the contrary, and one of our purposes is to show that the sigma
transformation is equivalent to the ALE approach with a particular type of mappings. Therefore,
we introduce the ALE-sigma (ALES) approach, which consists in an ALE interpretation of the
sigma transformation.

Our second purpose is to introduce a generalization of the classical sigma transformation taking
advantage of its reinterpretation in the ALE frame. Although the sigma-transformation technique
presents many advantages—essentially the accurate assimilation of the bed and surface boundaries
and the possibility of easily incorporating boundary layers—its classical variant, still widely used,
presents important drawbacks. On the one hand, it limits the possibilities of vertical discretization
and therefore prevents from correctly adapting the mesh to the particular needs of the simulation. On
the other hand, the classical sigma transformation can induce an important error in the computation
of the horizontal pressure gradient (HPG) in the presence of surface or bottom gradients. In
particular, this error leads to an inaccurate representation of possible density stratifications. We
propose in this paper a general transformation in the ALES approach that allows for a great
adaptability of the vertical discretization. The ALES transformation allows one to choose arbitrarily
the layer distribution over the vertical of the domain, and in that way to overcome, when possible,
the drawbacks of the classical sigma transformation as we show through numerical tests at the end
of this paper.

In Section 1 we present the sigma-transformation approach, and we give a detailed description
of the use and drawbacks of its most classical form. Then, we introduce the ALES approach and
we give a formulation of the three-dimensional free surface flow problem in this approach. A
generalization of the sigma transformation in the ALES approach is given in Section 4 and some
advantages of this generalization are illustrated numerically in Section 5.

2. THE SIGMA-TRANSFORMATION APPROACH

2.1. Principle

Let us first point out that this technique is applied to two- or three-dimensional domains in which
the lateral boundaries are perfectly vertical—in the sequel we will consider the three-dimensional
domains. This configuration is widely used for ocean and coastal applications and also in other
shallow areas. Only the surface and bottom boundaries move, and they are described by the two
functions defined on the same two-dimensional domain. It is then possible to perform a variable
change, which transforms the vertical coordinate of each point in the real domain into a value
contained in a fixed interval—for instance [0,1]—depending on the time and on the position of
this point in the two-dimensional domain. In fact, this comes to transform the irregular physical
domain into a fixed regular reference configuration.
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Before going further, let us describe more explicitly the considered configuration. Let � be the
invariant two-dimensional domain, whereas �t denotes the three-dimensional domain at each time
t ∈ I . The functions describing the free surface and the bottom of �t are, respectively, �(x, y, t)
and b(x, y, t), while h(x, y, t)=�(x, y, t)−b(x, y, t) denotes the water depth. The current domain
is then defined by

�t ={x=(x, y, z)/(x, y)∈� and b(x, y)�z��(x, y, t)} (1)

The sigma-transformation approach consists in transforming the Cartesian coordinate system
(x, y, z, t) into a topography-following coordinate system (x̂, ŷ, ẑ, t̂), called �-coordinate system
and defined by

t̂= t, x̂= x, ŷ= y and ẑ=�(x, y, z, t) (2)

where �(x, y, ẑ, t) is an arbitrary continuous and monotonic (��/�z�0) function satisfying

�(x, y,�(x, y, t), t) = 1

�(x, y,b(x, y, t), t) = 0 ∀(x, y, t)∈�× I
(3)

The reference configuration is therefore

�̂={x̂=(x̂, ŷ, ẑ)/(x̂, ŷ)∈� and 0�ẑ�1} (4)

An example of such a transformation is shown in Figure 1.
Thus, a particular transformation function �(x, y, ẑ, t) is chosen. Then, a triangulation of the

invariant two-dimensional domain � is defined and �(x, y, ẑ, t) is discretized. In some cases, the
transformation function is directly defined at the discrete level. The three-dimensional mesh T̂h

is defined on the reference configuration �̂ by arbitrarily distributing the two-dimensional mesh
as horizontal levels along the vertical. The corresponding mesh on the real domain is then defined
at each time step through the discrete transformation function �h(x, y, ẑ, t). Thus, the real mesh
moves only in the vertical direction. For the sake of clarity, we indicate that, if i denotes a particular
node and tn denotes a particular time, then the coordinates of i in the real domain at t= tn are

xni = x̂i , yni = ŷi and zni =�h(x̂i , ŷi , ẑi , t
n) (5)

where (x̂i , ŷi , ẑi ) are the constant coordinates of i in the reference configuration. The equations
describing the flow are then completely expressed in the reference domain; more precisely all the
partial derivatives are transformed into derivatives with respect to the �-coordinates (x, y, ẑ).

Ω

y
x

z

y
x

ẑ

Ω

tσ
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Figure 1. An example of a sigma transformation.
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The adoption of a �-coordinate system allows an accurate and smooth definition of the bed
and surface boundaries at each time. Indeed, the values of ẑ at the bottom and the free surface
are constant in time and space; that is, respectively, ẑ=0 and 1. This simplifies the kinematic
boundary condition considerably both at the bottom and the free surface. In addition, one can
easily incorporate the bottom and surface boundary layers, and increase their resolution without
having to increase the global number of layers. This is not possible in the commonly used
z-coordinate system [9], in which the bottom profile is approximated by a staircase form. Such a
step discretization provokes a loss of accuracy in the assimilation of the bathymetry, as well as
spurious errors. Many comparisons have been made between topography-following systems and
the z-coordinate system (see, for instance, [10, 11]), and these have shown that inferior numerical
results are obtained with the second one, especially in the simulation of overflow processes and
bottom layer dynamics.

For all these reasons, it has been gaining popularity and is used for a very large range of ocean
and coastal applications (see, for instance, [4–6]), and has also been applied more recently to
basin-scale problems [7, 8, 12, 13] and even sea-ice models [14]. The simplest and most commonly
used �-coordinate system is the one introduced by Phillips [3], to which we will refer to as the
classical sigma transform.

2.2. The classical sigma transformation and its drawbacks

The classical �-coordinate system [3] consists in adopting the following � function:

�(x, y, z, t)= z−b(x, y, t)

h(x, y, t)
(6)

In this configuration, the z-coordinates of the mesh nodes in the real domain are incremented
of bh(x, y, t) and multiplied by the coefficient hh(x, y, t) relative to their value in the reference
domain. Moreover, the relative width of each layer—i.e. the width divided by the local water
depth—is equal to the corresponding width in the reference configuration, and thus it is constant
over the time and over the whole two-dimensional domain �. Figure 2 shows an example of such
a mapping.

The advantage of this coordinate system is its simplicity: not only the implementation of the
transformation is easy but also the formulas for the variable change between the real and the
reference framework are relatively simple. Indeed the determinant of the transformation is equal

Ω Ω(t)
1

0

η(x,y,t)

b(x,y,t)

Figure 2. Example of a classical sigma transformation.
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to the water depth function

Ĵt = �z
�ẑ

=h(x, y, t) (7)

However, the classical sigma transformation also presents major drawbacks, due to the restriction
it operates on the vertical discretization. Indeed, it implies that all the levels necessarily follow the
bottom and free surface functions, and that the relative width of each layer—i.e. the width divided
by the local water depth—is constant in time and over the whole two-dimensional domain. As a
consequence, it cannot maintain equally high resolution in particular zones—for instance, near the
surface and the bottom—independent of the local water depth. Now many applications need a high
resolution of the surface and bottom layers everywhere, for instance, to represent accurately a surface
mixing process arising from wind, thermal forcing and turbulence. More generally, with a constant
number of horizontal levels, deeper zones of the domain can be under-discretized and shallower zones
over-discretized, and the latter may cause severe Courant–Friedrichs–Lewy restrictions.

In addition, the classical sigma transformation prevents from fixing the mesh in a particular zone
of the domain, which shall be solved more accurately. Now the movement of the mesh can generate
an amplification of the numerical diffusion, leading to a relevant perturbation of the solution. This
feature is illustrated through a simple numerical test case in Section 5.

Finally, the classical sigma transformation can induce the so-called sigma-coordinate pressure
gradient error [15, 16], which has evoked considerable concern in the meteorological and oceano-
graphic communities [17–22]. It has been recognized that, in the presence of bottom or free surface
gradients, the topography-following shape of the mesh can yield significant errors in the computa-
tion of the HPG in the momentum equation. Indeed, owing to the sigma transformation, the grid
elements become non-orthogonal and may even deteriorate quite strongly in shallow areas, for
instance, near tidal flats. Now this can lead to errors in the computation of the horizontal gradient
of a z-dependent function, if this function is not approximated accurately enough. Especially, the
HPG error can be relevant in density-stratified flows. Let us next describe more precisely the root
and effects of this sigma-coordinate pressure gradient error.

2.3. The sigma-coordinate pressure gradient error

This problem has essentially been analysed in the framework of hydrostatic flows, where the
pressure gradient error concerns the buoyancy term—that is, the term involving the spatial density
variations—because it involves the horizontal gradient of a z-dependent function. More particularly,
the HPG error arises from the barotropic part of the buoyancy term, which expresses

g∇2

(∫ �

z

��

�0
d�

)
(8)

where �� is the fluctuation of the fluid density around an average value �0 and ∇2 denotes
the horizontal gradient. This term accounts for the accelerations arising from the slight density
variations in the fluid.

The main difficulty in computing this term is attributed to the deformation of the grid cells in
the presence of bottom or surface gradients. Such a situation is especially dangerous for the finite
difference models because of the truncation errors inherent to the method. Besides, most authors
have analysed this problem for the case of a finite difference discretization—see, for instance,
[20–22]. They point out that the truncation errors in the computation of the horizontal gradient
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Figure 3. Example of hydrostatically consistent (left) and inconsistent (right) elements.

are increased by the transformation of the horizontal gradient in the sigma-coordinate system. In
the worst case, the deterioration of the grid cells can render the numerical scheme ‘hydrostatically
inconsistent’. This means that the difference between the discrete and the analytical versions of the
HPG force does not decrease when the resolution is increased, and that occurs when the so-called
hydrostatic consistency condition (see [16, 19]) is violated. Typically, this is the case when, in the
presence of very steep bottom or free surface gradients, one or more of the nodes at the bottom
of a real mesh element are situated above some nodes at its top, as illustrated in Figure 3 for
prismatic elements. Such a situation can sometimes be avoided already during mesh generation
by finer horizontal discretization or lower vertical discretization, especially when it is only caused
by the bottom gradient. Unfortunately, as pointed out by Mellor et al. [20], the hydrostatic consis-
tency condition is quite difficult to fulfil in oceanic applications and especially for estuaries.

In the case of a finite element method, the errors are of smaller magnitude because the pressure
gradient can be computed to a higher order. However, the HPG error exists and can be relevant,
even in geometries where the hydrostatic consistency condition is fulfilled. It arises essentially
from the interpolation error on the relative density field, which can be amplified when computing
its gradient. Especially, it becomes difficult to catch a density stratification in deformed elements
when the interpolation functions are not of high order.

An error in the computation of the HPG can be easily detected in test cases where the density
field varies only in the vertical direction—due, for instance, to a horizontal stratification of the
temperature or the water salinity. In these cases, the barotropic buoyancy source term (8) is zero

g∇2

(∫ �

z

��(�)

�0
d�

)
=0 (9)

In the absence of exterior source terms, the configuration should theoretically produce zero veloc-
ities: this makes spurious velocities easy to detect. Moreover, the density field should remain
unchanged, a perturbation of the stratification can therefore illustrate the error. Many models using
the classical sigma transformation have been tested on such cases and they produce artificial
flows, sometimes even degrading the solution beyond an acceptable limit (see in particular the
results obtained on the idealized sea-mount test case [17, 18, 23]). It has been shown that the
pressure gradient error depends on the coordinate slope, the density gradient and the polynomial
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interpolation degree of the vertical density distribution. Larger errors are found in the areas where
the pycnoclines intersect the bottom slope and especially in shallower zones.

Simulations performed with the finite-element-based three-dimensional free surface flow solver
Telemac-3d [12], in regions with non-horizontal bottom have also shown important errors in cases
where strong stratifications are present [24]. Moreover, they appear even when the hydrostatic
consistency condition is fulfilled. Simple test cases have shown that these errors arise from the
interpolation errors on the buoyancy term [24, 25] inherent to the finite element method. In order
to clarify this matter, let us develop the case where the density field varies quadratically only in
the vertical direction, for instance

��(x, y, z, t)=az2+b in �t × I

where a and b are the two constants. At the continuous level we have that

∇2

(∫ �

z

��

�0
d�

)
=0

Assume now that the density variations are interpolated by finite element functions that are
piecewise linear in the vertical direction. At the discrete level, using the trapezium rule for the
vertical integration—which is exact for linear functions—and denoting by Nl the number of levels
in the mesh, we then have that

∇2

(∫ �h

z

��h
�0

dz

)
= 1

�0
∇2

(
Nl−1∑
k=1

�zk+1/2
��(zk)+��(zk+1)

2

)

= 1

�0
∇2

(
Nl−1∑
k=1

�zk+1/2
a(z2k +z2k+1)+2b

2

)

= 1

�0

Nl−1∑
k=1

(
a (z2k +z2k+1)+2b

2
∇2�zk+1/2

)

where zk is the height of the kth level and�zk+1/2= zk+1−zk , for k=1, . . . ,Nl . Now in zones where
the grid elements are non-orthogonal, the horizontal gradient of the depth �zk+1/2 between the
layers is not zero. In addition, because of the interpolation error on ��, the terms do not compensate.
Therefore, the value of the buoyancy term is non-zero, which causes spurious numerical density
currents. This acts like an artificial source term, creating spurious velocities, and if the error is
important, like in shallow areas with steep bottom slopes, it can disturb the stratifications and even
the free surface.

Let us now illustrate this numerical phenomenon through some results obtained on the simple
test case of a standing basin using the Telemac-3d system. We consider a closed rectangular basin
with a length of 500m and a width of 100m and with a non-horizontal bottom varying quadratically
between −25 and −50m. The three-dimensional mesh is represented in Figure 4. It has been
obtained using the classical sigma transformation and piling up of the two-dimensional grid at 11
homogeneously distributed levels on the vertical. Its vertical cross section at y=50m is shown in
Figure 5. Note that this mesh fulfills the hydrostatic consistency condition.
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Figure 4. The initial three-dimensional mesh.

Figure 5. Vertical cross section of the initial three-dimensional mesh at y=50m.

The basin is filled with a fluid containing an active tracer T , acting on the density � following
the linear state equation:

�=�0+0.749979c

where c is the concentration of the tracer T . The initial density field can therefore be imposed
by setting a particular initial distribution of the tracer. We make the relative density ��/�0 vary
only in the vertical direction. We indicate that the density variation is interpolated linearly in the
Telemac-3d system. At the initial time, the free surface is constant and the velocity of the fluid is
zero. In addition, the diffusivity of the tracer is neglected and no exterior source term is applied.
The analytical solution of this test is thus clear and simple: the free surface and the density field
remain undisturbed and the fluid velocity is zero.

We emphasize on the fact that this test is relevant for applications in hydraulics. In fact, it can
be seen as a simplified configuration of a lake or an ocean at equilibrium. And it is essential that
the numerical scheme preserves this equilibrium, in order to be able to simulate more complex and
realistic cases. This test case is similar to the well-known idealized sea-mount test case [17, 18, 23]
used by many authors when dealing with the HPG error. However, the sea-mount test involves a
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very steep topography. We show with our test that important errors can also appear in the presence
of milder bottom gradients.

First, we set a density field varying linearly only in the vertical direction. The initial density
distribution and distribution after 100 s are presented in Figure 6. Since the density is interpolated
linearly, the HPG is computed exactly. Indeed, as expected, the system remains unchanged and no
spurious velocities are detected.

The initial tracer distribution is then modified so that the density field varies quadratically
in the vertical direction. The degree of the density variation is now higher than the degree of
the interpolation, and this leads to an error in the computation of the HPG. The initial density
distribution and distribution after 100 s are presented in Figure 7. The HPG error has no impact
on the density distribution but it provokes the creation of spurious velocities. We can evaluate the
error eh of the simulation as the Euclidian norm of the spurious velocity:

eh=‖Uh‖ (10)

Figure 8 shows the profile of this error eh as a function of the basin depth at x=100m, where
the error is the most significant. The maximal values of the error are obtained at the bottom and
at the free surface of the basin, where it reaches 2.04×10−3m/s.

Figure 6. Initial linear density distribution and distribution obtained at t=100 s.
Vertical cross section at y=50m.

Figure 7. Initial quadratic density distribution and distribution obtained at t=100 s.
Vertical cross section at y=50m.
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Figure 8. Profile of the error eh as a function of the basin depth at x=100m and t=100s .

Figure 9. Initial density stratification and density distribution at t=100s. Vertical cross section at y=50m.

The spurious velocities increase significantly when a stratified density field is set. In the next
test, � is a piecewise constant and discontinuous at a horizontal interface—as it happens, for
instance, in the presence of a horizontal temperature or salinity stratification. The initial density
stratification is presented in the left-hand side in Figure 9 and the density distribution obtained
at t=100s right on the same figure: the density stratification has been significantly perturbed. In
this case, the HPG error creates larger spurious velocities that perturb the density stratification.
Figure 10 presents the profile of the error eh at x=100m: at the surface of the basin it reaches
0,12m/s.

If we go further with the simulation, we note that the system tends to a new steady state, in
which the tracer distribution becomes smooth, so that the HPG error decreases. Figure 11 shows
the time evolution of the error Eh(t), defined as the L2 norm of the spurious velocity:

Eh(t)=
(∫

�(t)
‖U‖2

)1/2

(11)
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with an initial density stratification.
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Figure 11. Time evolution of the error Eh in the case of an initial horizontal density stratification
with the classical sigma mesh.

The error oscillates as a consequence of the evolution of the density stratification and seems to
converge to a non-zero value. Figure 12 shows the density distribution obtained after 1000s. As we
can see, the horizontal stratification is now almost smooth. The gradient of the density variation has
therefore decreased, and so has also the error in the computation of the HPG. As a consequence,
the spurious velocities are smaller, as shown in Figure 13. The maximal value of the local error
eh is now 6×10−2m/s. However, since the density distribution does not become linear, the error
does not cancel.

These test cases clearly reveal the appearance of an HPG error when the density field is not
interpolated exactly in the finite element method. In addition, they show that this error increases
with the value of the initial vertical density gradient. Indeed, the maximal spurious velocities are
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Figure 12. Density distribution at t=1000s. Vertical cross section at y=50m.
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Figure 13. Profile of the error eh as a function of the basin depth at x=100m and t=1000s
with an initial density stratification.

obtained when the density field is discontinuous, thus when its vertical gradient is infinite. On the
other hand, they appear even when the hydrostatic consistency condition is fulfilled, and they can
be significant over bottoms with mild gradients.

Since the stratifications are nearly horizontal in most situations, a z-coordinate system might
be preferred, at least locally. But for applications where both the topography and the density are
essential, this would not be a valid option. Another system avoiding the pressure gradient problem
is the so-called isopycnic coordinate system, which uses the density as the vertical coordinate.
But this system is not adequate to study barotropic flows or whenever topography plays a major
role.

Therefore, important efforts have been invested in the development of numerical methods
improving the approximation of horizontal gradients. A simple and significant improvement is
obtained by subtracting the horizontal mean value from the actual density field before computing
the HPG force [20]. A further improvement results from the use of the so-called density-Jacobian
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formulation of the pressure gradient (see [4, 21]). It is obtained by applying the Leibniz rule to
the baroclinic part of the buoyancy term (8):

g∇2

(∫ �

z

��

�0
d�

)
=g

∫ �

z
∇2

(
��

�0

)
d�+g

��

�0
∇2� (12)

The density fluctuation term is differentiated first and integrated after, which allows a more accurate
approximation. For instance, if the density field varies linearly, its vertical integration results in a
second-order term. Thus, a second-order accurate differencing method has to be used to achieve an
exact computation of the gradient using the expression in the left-hand side of (12). On the contrary,
if the expression in the right-hand side of (12) is used, basic first-order derivation and second-order
integration methods can be used. This technique has been convincing for the finite element system
Telemac-3D (see [26]) in the case of a linear density fluctuation ��. However, for non-linear or
discontinuous density fields, errors still appear. Other techniques consist in implementing higher-
order methods to estimate the pressure gradient term (e.g. [17, 27]), but they fail in some cases
such as in the presence of strongly stratified flows. Stelling and Van Kester [22] suggested an
alternative method, which basically transforms the sigma grid back to a Cartesian system before
computing the HPG force, resulting in substantial reduction of the errors. This method, slightly
improved in [28], is efficient but very costly. Moreover, substantial errors remain when there are
strong vertical gradients in the density field.

An intensive research is still in course for developing new and more accurate methods for
approximating horizontal gradients (see, e.g. [5, 18]). But another way to overcome the problem
is to design more general coordinate systems, combining the advantages of both the topography-
following and the z-coordinate systems. Such a system should allow a transition from sigma- to
z-coordinate, such that the upper and lower layers follow, respectively, the free surface and the
bottom topography, and layers in between are arbitrary. This would allow for more adaptability
of the vertical discretization. For instance, in the case of the standing basin just presented, we
can think of imposing a fixed horizontal plane at the level of the density stratification. Indeed,
in this way, the density gradient would be computed on orthogonal grid elements, and the HPG
error would cancel. However, this is not possible with the classical sigma transformation. A more
general transformation is needed.

Let us now introduce the ALES approach, which is a reinterpretation of the sigma transformation
in the ALE approach. This approach will then allow one to define a very general sigma-coordinate
system.

3. THE ALES APPROACH

3.1. ALE interpretation of the sigma transformation

Our purpose here is to show that the sigma transformation can be interpreted as the adoption of a
particular ALE mapping and an unusual ALE formulation.

On the one hand, the vertical-coordinate transformation (2)–(3) can be performed using the
following ALE mapping between the reference configuration �̂ and the real domain �t :

Ât : �̂−→�t , x(x̂, t)=Ât (x̂) with x= x̂, y= ŷ and z= Z(x, y, ẑ, t) (13)
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where Z(x, y, ẑ, t) is an arbitrary continuous and monotonic (�Z/�ẑ�0) function satisfying

Z(x, y,0, t) = �(x, y, t) ∀(x, y, t)∈�× I

Z(x, y,1, t) = b(x, y, t)
(14)

Actually, this definition includes the ALE mappings for domains moving only in the vertical
direction. Note that consequently the domain velocity has only a vertical non-zero component, that
is c=(0,0,c)T.

On the other hand, the sigma transformation approach states that the equations be completely
transformed into the �-coordinate system, which means that all partial derivatives are reformulated
with respect to the fixed domain. Interpreting the sigma transformation as an ALE mapping makes
clear that this consists in reformulating the derivatives into the ALE frame. Especially, the time
derivatives are reformulated into ALE time derivatives: the effects of the moving domain are thus
effectively taken into account.

Throughout, we will refer to the ALE interpretation of the sigma transformation as the ALES
approach. We want to emphasize on the fact that the equations can be expressed both in the ALE
frame or in the real domain, but it is essential that the time derivative be expressed in the ALE
frame, so that the domain movement is taken into account. We introduce next an ALES formulation
of the three-dimensional free surface flow problem, which is a combination of the usual ALE
formulation and the one generally used in the sigma-transformation approach.

3.2. ALES formulation of the three-dimensional free surface flow problem

Let us first introduce some relations involving the Jacobian determinant Ĵt of the mapping, as
well as several derivation formulas that will be needed to express the equations in the reference
configuration �̂. Since the mapping only transforms the vertical coordinates of the system, the
continuous expression of the Jacobian determinant is

Ĵt (x, y, ẑ, t)= �Z
�ẑ

(x, y, ẑ, t)

By a classical abuse of notation, we denote the time derivative on the ALE frame, expressed in
the spatial coordinate, by ��/�t |x̂. It is defined as follows:

��

�t

∣∣∣∣
x̂
:�t × I −→R,

��

�t

∣∣∣∣
x̂
(x, t)= ��̂

�t
(x̂, t) with x̂=A−1

t (x) (15)

The relationship between the ALE time derivative of a function � :�t −→R and its Eulerian time
derivative is

��

�t
= ��

�t

∣∣∣∣
x̂
+ �ẑ

�t
��

�ẑ
(16)
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The following formulas relate the different space partial derivatives of �:

��

�x
= ��

�x

∣∣∣∣
x̂
+ �ẑ

�x
��

�ẑ
(17)

��

�y
= ��

�y

∣∣∣∣
x̂
+ �ẑ

�y
��

�ẑ
(18)

��

�z
= �ẑ

�z
��

�ẑ
(19)

Taking �(x, y, z, t)= z, essential relations can be derived:

�ẑ
�t

=− Ĵ−1
t

�z
�t

∣∣∣∣
x̂
,

�ẑ
�x

=− Ĵ−1
t

�z
�x

∣∣∣∣
x̂

(20)

�ẑ
�y

=− Ĵ−1
t

�z
�y

∣∣∣∣
x̂
,

�ẑ
�z

= Ĵ−1
t (21)

We consider the Navier–Stokes equations describing the mean motion of an incompressible
Newtonian fluid in a three-dimensional moving domain �t of the type defined by (1). In the
Cartesian frame, these equations are the following, valid for all t ∈ I and for all x∈�t :

du
dt

−div(�∇u)+ 1

�
∇2 p= f (22)

dw

dt
−div(�∇w)+ 1

�

�p
�z

=−g (23)

div U=0 (24)

where u and w are, respectively, the horizontal and vertical velocities, U=(u,w)T is the total
velocity and � is the dynamic viscosity coefficient of the fluid. The horizontal source term is
denoted by f and the gravity acceleration by g. This system is closed by convenient boundary
conditions. In particular, the kinematic condition on the bottom of the domain �b expressing
imperviousness is

U ·n=0 on �b∪�b (25)

where n is the outward normal to the current domain �t . At the free surface �s,t , the velocity of
the fluid is considered equal to the velocity of the free surface itself, which is expressed by the
following kinematic condition:

��

�t
−U ·n=0 on �s,t (26)
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The usual ALE formulation consists in transforming the Eulerian time derivative in an ALE
time derivative:

�u
�t

∣∣∣∣
x̂
+
(
U− �x̂

�t

)
·∇u−div(�∇u)+ 1

�
∇2 p= f (27)

dw

dt
−div(�∇w)+ 1

�

�p
�z

=−g (28)

div U=0 (29)

The usual sigma-transformation formulation consists in reformulating all the time and spatial
derivatives into the ALE frame. Here we will not transform the second-order derivatives in the
diffusion terms, because this would lead to a very long and complex expression. In addition, it has
been established (see e.g. [20, 21]) that a transformation of the HPG into a topography-following
coordinate system can increase the computational error of this term. We therefore also keep the
partial derivatives in these terms in the Cartesian frame. The definition of a new ‘pseudo-vertical
velocity’ simplifies the transformation of the equations

w∗ = dẑ

dt
= �ẑ

�t
+u

�ẑ
�x

+v
�ẑ
�y

+w
�ẑ
�z

in �t (30)

where d/dt denotes the total derivative in the real domain. We will see that it is more convenient
to use

Ĵtw
∗ = ŵ− �z

�t

∣∣∣∣
x̂
− û

�z
�x

∣∣∣∣
x̂
− v̂

�z
�y

∣∣∣∣
x̂
= ŵ− ĉ− û

�z
�x

∣∣∣∣
x̂
− v̂

�z
�y

∣∣∣∣
x̂

(31)

Remark 3.1
Note that this definition of w∗, which is standard in the framework of the sigma transformation,
can be misleading in the ALE formulation. In particular, the velocity of the domain is contained
in this ‘pseudo-vertical velocity’. This may explain some confusions found in the literature, and
in particular the false idea that models using the sigma transformation do not take into account
the movement of the domain.

The expression of the continuity equation (24) in the reference configuration is

�( Ĵt )

�t

∣∣∣∣∣
x̂

+ �( Ĵt u)

�x

∣∣∣∣∣
x̂

+ �( Ĵtv)

�y

∣∣∣∣∣
x̂

+ �( Ĵtw∗)
�ẑ

=0 in �̂ (32)

To obtain this expression, one has to start from Equation (24), multiply with the Jacobian deter-
minant Ĵt , and then use relations (17)–(21).

The momentum equations (22)–(23) can be expressed in the following non-conservative form:

�û
�t

∣∣∣∣
x̂
+ û

�û
�x

∣∣∣∣
x̂
+ v̂

�û
�y

∣∣∣∣
x̂
+ŵ∗ �û

�ẑ
−(div(m∇u))◦Ât +

(
1

�
∇2 p

)
◦Ât = f̂ in �̂

�ŵ

�t

∣∣∣∣
x̂
+ û

�ŵ

�x

∣∣∣∣
x̂
+ v̂

�ŵ

�y

∣∣∣∣
x̂
+ŵ∗ �ŵ

�ẑ
−(div(m∇w))◦Ât + Ĵ−1

t
1

�

�p
�ẑ

= −g in �̂

(33)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:357–386
DOI: 10.1002/fld



SIGMA TRANSFORMATION AND ALE FORMULATION 373

But using formulation (32) of the continuity equation, we deduce a conservative form of the
momentum equations

�( Ĵt û)

�t

∣∣∣∣∣
x̂

+ �( Ĵt ûû)

�x

∣∣∣∣∣
x̂

+ �( Ĵt v̂û)

�y

∣∣∣∣∣
x̂

+ �( Ĵtw∗û)

�ẑ

− Ĵt (div(m∇u))◦Ât + Ĵt

(
1

�
∇2 p

)
◦Ât = f̂ in �̂

�( Ĵt ŵ)

�t

∣∣∣∣∣
x̂

+ �( Ĵt ûŵ)

�x

∣∣∣∣∣
x̂

+ �( Ĵt v̂ŵ)

�y

∣∣∣∣∣
x̂

+ �( Ĵtw∗ŵ)

�ẑ

− Ĵt (div(m∇w))◦Ât + 1

�

�p
�ẑ

=−g in �̂

(34)

Remark 3.2
Note that when the hydrostatic assumption is applied, the system simplifies considerably. Indeed,
the accelerations of the vertical velocity w are then neglected and w disappears completely from
the transformed equations. In that case, only the newly defined transformed vertical velocity w∗
has to be evaluated. The physical vertical velocity can then be recalculated using relation (31).

As we can see, the expression of the advection terms in a �-coordinate system is quite simple
using the Jacobian determinant of the ALE mapping. Moreover, it perfectly suits to the formulation
of the continuity equation in this system. On the other hand, the kinematic boundary conditions
at the top and bottom surfaces of the domain—(25) and (26)—can be expressed in a simple form
in the reference configuration, that is

w∗ =0 at ẑ=0 and ẑ=1 (35)

Now that we have introduced the ALES approach, we aim to show how it can be helpful to
improve the classical variant of the sigma transformation. In fact, a way to overcome its drawbacks
is to design new �-coordinate systems, allowing for more adaptability of the vertical discretization.
We propose a very general sigma-coordinate system in the ALES approach, which allows for an
arbitrary distribution of the layers along the vertical direction at each time step.

4. GENERALIZATION OF THE SIGMA TRANSFORMATION IN THE
ALES APPROACH

The idea of developing new sigma-coordinate systems has been considered by meteorologists and
oceanographers since the disadvantages of the classical sigma transformation were detected. In
[6], Song and Haidvogel developed the so-called general s-coordinate in order to allow uniformly
high resolution near the surface, while maintaining the topography-following properties of the
classical sigma transform. It has proved to be more accurate and stable in the case of a strong
stratification, but the Jacobian determinant of this transformation is quite complex, making it
difficult to implement. Other authors have focused on systems that would be less sensitive to the
pressure gradient error. Deleersnijder and Beckers [29] proposed to define a fixed horizontal level
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at a constant depth, splitting the domain into an upper and a lower region, and apply the classical
sigma transformation to both sub-domains. In the case of a slight surface slope, this system leads to
almost horizontal levels in the upper region. This idea has also been used in [30] for the simulation
of surface flows over submerged structures laid on a flat bottom. In this case, the lower part of the
domain remains constant in time, which simplifies the resolution at the structure’s surface. This
sigma-coordinate system has been generalized in [31] to fit to floating and immersed structures
over non-flat bottom. A more general approach was introduced by Gerdes [10] and consists in
assuming a z-level distribution on the whole domain and ‘correcting’ locally the depth of a level
whenever its distance from the bottom or the surface is smaller than a minimal width chosen
arbitrarily.

However, in real domains, the relative importance of topographical effect, density forcing, inertia
and diffusion varies from point to point as well as in time. A model should thus allow one to use
different types of grids for different regions. Therefore, a generic discrete vertical transformation
function Zh should be implemented, allowing for arbitrary-level distribution at each time step. This
idea was first introduced by Deleersnijder and Ruddick [32], where they applied it to a marine
model. Several systems have adopted such a general coordinate system, providing the user with
more flexibility in the choice of the optimal model grid for a particular application. Indeed, the
recently developed oceanographic ROMS model [5] follows this approach, and a general coordinate
system has been introduced for the POM model [11]. They propose a wide variety of particular
vertical coordinate systems, including the z-level, the classical sigma transformation and Gerdes’
s-coordinate systems.

Taking advantage of the interpretation of the sigma transformation in the ALES approach, we
have developed a very general sigma-coordinate system, allowing for an arbitrary distribution
of the layers along the vertical direction, at each time step. Especially, it allows one to impose
fixed levels in particular zones of the domain, for instance, to capture stratifications. The Jacobian
determinant of the mapping plays a central role in this system. Indeed, it characterizes the particular
transformation defined in each grid element and at each time step, and appears in the expression
of the equations driving the flow expressed in the reference configuration. The system has been
implemented in the finite-element-based three-dimensional free surface flow solver Telemac-3d
[12]. Next, we will describe this general coordinate system and give some numerical illustration
of its advantages.

4.1. Principle

Let us consider again the general form (13) of an ALES mapping between the reference config-
uration �̂ and the real domain �t : it is characterized by a continuous and monotonic vertical
transformation function Z : �̂× I −→�t satisfying

Z(x, y,0, t) = �(x, y, t)

Z(x, y,1, t) = b(x, y, t) ∀(x, y, t)∈�× I
(36)

The reference configuration �̂ is first discretized by Nl horizontal levels, distributed along the
vertical following an arbitrary partition of the interval [0,1]:

0= ẑ1< · · ·<ẑk< · · ·<ẑNl =1
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The height of the grid nodes located on the kth level of T̂h is therefore ẑk , which is constant in space
and time. We will denote by lk+1/2 the layer delimited by levels k and k+1, for k=1, . . . , (Nl −1),
and by

�ẑk+1/2= ẑk+1− ẑk

its width. The transformation function Z(x, y, ẑ, t) is then discretized by means of piecewise linear
functions in the vertical direction. Inside each layer, this transformation can be expressed as a
classical sigma transformation, characterized by the heights—in the real domain—of the levels
delimiting the layer. Indeed, the restriction of the discrete transformation on each layer lk+1/2 can
be defined as follows on �×[ẑk, ẑk+1]× I :

Zk+1/2(x, y, ẑ, t)= �zk+1/2(x, y, t)

�ẑk+1/2
(ẑ− ẑk)+zk(x, y, t) (37)

where zk(x, y, t) is an arbitrary discrete function describing the current height of the grid level k at
each two-dimensional node and at each time step. Then �zk+1/2(x, y, t)= zk+1(x, y, t)−zk(x, y, t)
denotes the width of the layer lk+1/2.

Obviously, it is the choice of the set of discrete functions

{zk(x, y, t)/k=1, . . . ,Nl}
which determines the discrete mapping to use for a particular simulation. We point out that they are
defined by their value at each node on the two-dimensional mesh and at each time step. Moreover,
they must satisfy the following conditions for all (x, y, t)∈�× I :

z1(x, y, t) = bh(x, y, t)

zNl (x, y, t) = hh(x, y, t)

zk+1(x, y, t)−zk(x, y, t) � hmin>0 ∀k∈[1,Nl −1]
(38)

where hmin is a constant minimal width chosen arbitrarily.
Denoting the discrete domain at each time t by �h,t , and its triangulation by Th,t , the discrete

ALE mapping is defined as follows:

Âh,t : �̂−→�h,t , x(x̂, t)=Âh,t (x̂) with x= x̂, y= ŷ and z= Zh(x, y, ẑ, t) (39)

where Zh(x, y, ẑ, t) is a continuous function, linear on each layer lk+1/2 and defined by (37).
This expression of the discrete mapping is very general and allows a wide choice of layer

distributions. Indeed, by imposing for k=1, . . . , (Nl −1)

zk(x, y, t)=hh(x, y, t)ẑk+bh(x, y, t) (40)

the classical sigma transformation is recovered. One can also impose some levels to be horizontal
and fixed in time at some constant arbitrary heights and define classical sigma transformations in
between each one of these levels. This can be very useful to catch horizontal stratifications. Such
a grid is illustrated in Figure 14. It counts seven levels—of which two are horizontal and fixed in
time—and it results from a discrete transformation function Zh(x, y, t) defined from the following
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   (t)= η
Ω(t)Ω

1

z4

0

z7

z1 = b(t)

z5

z4

z5 h,t

Figure 14. Generalized sigma grid.

set of real level-height functions:

zk(x, y, t)=
(
z4−bh(x, y, t)

ẑ4

)
ẑk+bh(x, y, t) for 1�k<4

z4(x, y, t)=c4

z5(x, y, t)=c5

zk(x, y, t)=
(

�h(x, y, t)−z5
1− ẑ5

)
(ẑk− ẑ5)+z5 for 5<k�7

where c4 and c5 are the two constant values. But one could as well imagine to impose fixed but
non-horizontal levels for the case of steep stratifications.

More generally, the real height of each grid node can be imposed at each time step, defining
the discrete function zk(x, y, t) for k=1, . . . , (Nl −1). The evolution of the grid is then controlled
during the whole simulation.

Remark 4.1
We indicate that a test should be made at each time step to make sure that condition (38) is
satisfied. In the case the height of a level violates this condition at some node, its value can be
corrected using a min-mod formula.

4.2. Jacobian determinant of the discrete mapping

The model must be able to solve the equations for any particular mapping Âh,t of the form
described previously. Therefore, the Jacobian determinant Ĵh,t of the discrete mapping must be
expressed in a generic form.

We recall that the Jacobian determinant of the classical sigma transformation is constant along
the vertical and equal to the water depth. This is no longer true when the transformation is
generalized as it is here. Indeed, in this case, Ĵh,t varies along the vertical direction but it remains
constant on each grid layer in the vertical direction. Its expression on each layer lk+1/2, for
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k=1, . . . , (Nl −1) is

Ĵh(x, y, ẑ, t)= �Zk+1/2

�ẑ
(x, y, ẑ, t)= �zk+1/2(x, y, t)

�ẑk+1/2
in �×[ẑk, ẑk+1] ∀t ∈ I (41)

In the following, we will denote by Ĵk+1/2 the restriction of Ĵh to layer lk+1/2—in which the
Jacobian determinant is independent of the ẑ-coordinate:

Ĵk+1/2(x, y, t)= �zk+1/2(x, y, t)

�ẑk+1/2
in � ∀t ∈ I (42)

The integral of any discrete function �h :�h,t −→R on the discrete domain �h,t can thus be
transformed and decomposed as follows:∫

�h,t

�h dx=
∫

�̂
Ĵh,t �̂h dx̂

= ∑
k=1,...,Nl−1

∫
l̂k+1/2

Ĵk+1/2(x, y, t)�̂h(x, y, ẑ)dx̂

= ∑
k=1,...,Nl−1

∫
�
Ĵk+1/2(x, y, t)

(∫ ẑk+1

ẑk
�̂h(x, y, ẑ, t)dẑ

)
d�

The value of this discrete Jacobian determinant characterizes the particular transformation
defined in each grid element and at each time step. It appears in the discrete counterpart of the
equations driving the flow when expressed in the reference configuration.

5. NUMERICAL ILLUSTRATION

The general sigma-coordinate system introduced previously has been implemented in the finite-
element-based three-dimensional free surface flow solver Telemac-3d [12], in order to allow more
flexibility in the choice of the optimal vertical domain discretization. In this last part of this paper
we aim at showing numerically some advantages of this new coordinate system. For this purpose
we present three test cases, for which we compare the results obtained with the Telemac-3d system
using different grids. Some of those grids can be defined using the classical sigma transformation,
others must be defined using the generalized version.

5.1. Test case 1: density stratification in a standing basin

We consider again the test of the standing basin with a density stratification presented in Section 2.3.
We now perform the same simulation on a grid obtained using the generalized sigma transformation.
It still counts the same number of levels, 11, but they are distributed differently: a fixed plane is
imposed exactly at the height of the stratification, and a homogeneous classical sigma transformation
is operated in both the lower and the upper parts of the basin. The left-hand side of Figure 15
shows the resulting mesh and the right-hand side shows the density distribution obtained after
100 s with this mesh.
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Figure 15. Generalized sigma transformation mesh (left) and density distribution (right) obtained at
t=100s. Vertical cross sections at y=50m.

Figure 16. Time evolution of the error Eh in the case of an initial horizontal density stratification.

We observe that the stratification is unperturbed. In addition, Figure 16 shows that no spurious
velocities have appeared, even after 1000 s. Thus, the equilibrium has been completely preserved.
This shows that fixed planes can help to reproduce accurately density stratifications.

Of course, this solution is ad hoc since the mesh fits exactly to the shape of the stratification.
Nevertheless, in some practical applications, this shape and its time evolution may be known, at
least approximately. In such cases, the ALES formulation allows one to adapt the mesh in order
to reproduce accurately the stratification, getting rid of strong spurious diffusion obtained with the
classical sigma-transformation technique.

5.2. Test case 2: advection of a passive tracer in a three-dimensional closed basin with a
standing wave

In this test case we aim to reveal the amplification of the numerical diffusion due to the movement
of the mesh, and show that it is possible to minimize this phenomenon by fixing some particular
zones of the mesh.

For this purpose, we consider the case of the standing wave in a closed basin. The fluid is
inviscid, and a passive tracer—which has no influence on the hydrodynamics of the fluid—is
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Figure 17. Temporal profile of the exact water depth at x=0m, y=5m.

advected by the flow. A closed square basin with side L and with a constant bottom at z=−H
is considered, where H is the equilibrium water depth. In order to concentrate on the advection
of the tracer, we impose the analytical solution to the flow, provided by the small amplitude wave
theory for the linear equations (see, for instance [26]). The analytic free-surface profile and fluid
velocities are defined as follows:

� = �0 cos(k	x)cos(�t)

u = ��0
cosh(k	(z+H))

sinh(k	H)
sin (k	x)sin (�t)

v = 0

w = −��0
sinh(k	(z+H))

sinh(k	H)
cos(k	x)sin (�t)

(43)

with �2=gk tanh(kH), where �0=0.2 is the amplitude of the wave and k=1/L the frequency.
The analytical water depth profile at x=0m is represented in Figure 17.

At the initial time, the tracer T is stratified along the vertical: its concentration c is equal
to 4 if z�−4.5m, and it is equal to 2 if z<−4.5m. We emphasize the fact that there is no
diffusion on the tracer, only advection. The perturbation of the stratification should therefore not
be larger than the wave amplitude of the flow. A first simulation is performed on the three-
dimensional grid represented in the left-hand side of Figure 18, obtained using the classical sigma
transformation with 11 homogeneously distributed levels on the vertical. The right-hand side of
Figure 18 presents the vertical tracer distribution obtained after 30 s of simulation: we observe
an important vertical diffusion of the tracer distribution. The precision of the simulation can be
improved by refining the mesh in the stratified zone. This mesh, represented in the left-hand
side of Figure 19, is obtained using the classical sigma transformation with the same number of
levels, but using a non-homogeneous distribution of these levels along the vertical. The tracer
distribution obtained after 30 s is shown in the right-hand side of Figure 19, it is slightly less
diffused.

Now, in order to evaluate the precision of these results, we have performed the same simulation
refining significantly the mesh along the vertical: we have used 55, 105 and finally 205 levels
on the vertical. Figure 20 presents the results of these simulations after 30 s. They show that the
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Figure 18. Classical sigma mesh (left) and tracer profile obtained at t=30s (right) with this mesh.

Figure 19. Non-homogeneous classical sigma mesh (left) and tracer profile
obtained at t=30s (right) with this mesh.

55 levels 205 levels105 levels

Figure 20. Tracer profile obtained at t=30s increasing the number of levels.
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Figure 21. Generalized sigma-transformation mesh (left) and tracer profile (right)
obtained at t=30 s with this mesh.

discrete solution converges to a solution in which the perturbation of the stratification is of the
same order as the wave amplitude.

Let us now evaluate the effect of the mesh movement on the result of this simulation. We use
a new grid, shown in the left-hand side of Figure 21 and obtained using the generalized sigma
transformation described in this paper. It counts 11 levels and the vertical resolution in the stratified
zone is the same as in the second classical sigma mesh (represented in the left-hand side of
Figure 19), but a horizontal plane is fixed at height z=−3.5m, so that the inferior part of the
mesh does not move. The results obtained on this grid are presented in the right-hand side of
Figure 21.

The classical sigma mesh shown in Figure 19 and the generalized sigma mesh used now
have the same vertical resolution, but in the first case all the layers move with the free surface,
whereas in the second case only the upper layers move. Comparing the results obtained on both
meshes we observe that the vertical diffusion of the tracer distribution is significantly smaller
when using the second mesh: the movement of the mesh in the vertical direction amplifies the
vertical numerical diffusion. In fact, the result obtained with a mesh counting 11 layers, from which
eight are fixed, is as accurate as the result obtained with a mesh counting 55 moving layers (see
Figure 20).

This test case shows that the movement of the mesh can sometimes provoke additional numerical
diffusion. This can be limited using the ALES transformation, by imposing fixed layers and
therefore cancelling the movement of the mesh in particular zones that should be solved more
accurately.

5.3. Test case 3: effect of a heat source in a cone-shaped basin

We now show some results on a realistic test case, which simulates the effect of a heat source
in the middle of a closed basin with steep bathymetry. This test case does not have an analytical
solution, and we do only present qualitative results. However, in this case the bottom gradient
has no influence on the heat spreading, and we should therefore obtain the same temperature
distribution as in the case where the bottom is flat. We therefore begin with a simulation of the
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Figure 22. Vertical cross section at y=2000m of the three-dimensional mesh.

Figure 23. Tracer distribution at t=1800s.

same test case with a flat bottom, and we then compare it with the results obtained in the case of
steep bathymetry, using two different vertical discretizations.

We first consider a square closed basin of side L=4000m, with a constant bottom at z=−10m.
At the initial time, the water surface is flat (h=10m) and no motion is taken. Figure 22 shows
the vertical cross section of the initial three-dimensional mesh at y=2000m. After one time
step, water is discharged with an excess temperature of T =333◦C from a point source located
in the middle of the water column at the centre of the basin. The coordinates of this source
point are x=2000m, y=2000m and z=−5m. The water discharge of the source is Q=20m3/s.
A constant horizontal viscosity coefficient of �h=10−4 and no vertical diffusion are chosen for
the fluid velocities. No diffusion at all is considered on the tracer, so that only the advection is
evaluated. We indicate that the temperature is an active tracer: the equation of state for perfect
gases relates the fluid density to the temperature. The temperature profile after 30min is shown in
Figure 23. We can see that the effect of heat on the flow has been taken into account: the velocities
are mainly vertical and they are oriented in the direction of the free surface since the heat goes
upwards.

We now consider a different configuration. A cone-shaped obstacle is placed on the bottom
at the middle of the domain. We want to compare the results obtained on two different meshes,
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(a)

(b)

Figure 24. Mesh (a) has been obtained using the classical sigma transformation and mesh (b) has been
obtained using a more general sigma-coordinate system.

whose vertical cross sections are shown in Figure 24: mesh (a) has been obtained using the
classical sigma transformation, whereas mesh (b) has been obtained using Gerdes transformation
[10], which can be defined through the generalized sigma-coordinate system introduced in this
paper. This transformation allows one to have nearly horizontal layers everywhere. In that way, the
layers containing the heat source do not move during the entire simulation, and they are almost
horizontal. In mesh (a) instead, the layers around the source move with the free surface, and
they contain highly deformed elements, some of which do not fulfil the hydrostatic consistency
condition. We have no analytical solution for this test case. However, the obstacle on the bottom
should have no consequence on the tracer distribution. Therefore, we expect to obtain the same
result as in the previous simulation with a flat bottom. Figure 25 shows the temperature profiles
obtained after 360 time steps, using both meshes, as vertical cross sections at y=2m. The tracer
distribution obtained with the classical sigma mesh (a) is very different from the one obtained on
a flat bottom (see Figure 23). The temperature has a maximal value of 38◦ in the middle of the
basin, whereas it does not exceed 23◦ in the case of the flat bottom. In addition, a non-physical
effect appears around the upper part of the obstacle: the heat spreads out in the bottom direction,
whereas it should only go upwards. On the contrary, with mesh (b), the tracer distribution is
almost the same as the one obtained with a flat bottom. Figure 26 gives a better comparison of
both tracer profiles. We see that the shape and also the values of the tracer distribution are very
similar. We can therefore say that the result obtained using the generalized sigma mesh (b) is more
accurate.

Imposing nearly horizontal layers in areas with density gradients can improve the accuracy of the
simulations. Therefore, it is advantageous to have more flexibility in the definition of the vertical
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(a)

(b)

Figure 25. Temperature profiles obtained at t=1800s using (a) the classical sigma
mesh and (b) the sigma-generalized mesh.

discretization, as it is the case with the generalized sigma-coordinate system we have proposed in
this paper.

6. CONCLUSION

In this paper, the link between the sigma-transformation approach and the ALE approach has
been clearly established. Indeed, we have shown that the sigma transform is equivalent to the
ALE approach with a particular type of mappings. We have therefore introduced the ALE-sigma
(ALES) approach, which consists in an ALE interpretation of the sigma transform. Then, we
have proposed a very general transformation in the ALES approach, allowing for a great adapt-
ability of the vertical discretization and therefore overcoming some drawbacks of the classical
sigma transform. This general sigma-coordinate system has been implemented in the three-
dimensional free-surface flow solver Telemac-3d [12], in order to allow more flexibility in the
choice of the optimal vertical domain discretization. Several numerical tests have shown the
advantages of this new coordinate system, as, for example, a better representation of horizontal
stratifications.
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Figure 26. Temperature profiles obtained at t=1800s with a flat bottom (upper figure) and with the
obstacle on the bottom and using the generalized sigma mesh.
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Thesis, Institut für Strömungsmechanik und ERiB, Universität Hannover, 1995.
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